
SPHINCS+C
Compressing SPHINCS+ With (Almost) No Cost

Andreas Hülsing, Mikhail Kudinov, Eyal Ronen, Eylon Yogev

SPHINCS+

● A hash-based signature scheme

● One of the selected NIST PQ digital schemes

○ One of the most secure and robust schemes

● Has a “small” and “fast” variant (for each security level)

● Actually allows a wide range of tradeoffs between:

○ Sig-Size, Sig-Gen-Time, Sig-Ver-Time

○ In general: faster Sig-Gen-Time and Sig-Ver-Time -> larger Sig-Size

SPHINCS+C

● Same structure with new more efficient primitives: WOTS+C, FORS+C

● Minor code changes compared to SPHINCS+

● Allows a new realm of better tradeoffs than SPHINCS+:

○ E.g., smaller Sig-Size with same Sig-Gen-Time

Intuition for WOTS+C and FORS+C

● Hash and Sign

○ 𝑑 = 𝐻𝐴𝑆𝐻(𝑟| 𝑚 , 𝑚 ∈ 0,1 ∗, 𝑑 ∈ 0,1 𝑛, 𝑟 ← $

○ 𝜎 = 𝑆𝐼𝐺𝑁(𝑑)

● SIGN accepts any value of d

○ SIGN may be “compressed” (size, run time) for some

sub-domains

● Basic idea

○ Find “good” sub-domain 𝐷𝐶 and compress SIGN/VER for it

○ For signing, we add an incrementing counter to the hash

○ Search for cnt value such that dC = 𝐻𝐴𝑆𝐻(𝑟| 𝑐𝑛𝑡||𝑚 ∈ 𝐷𝐶

○ 𝜎𝑐 = 𝑆𝐼𝐺𝑁𝐶(𝑑𝑐)||cnt

○ Verifier checks that 𝐻𝐴𝑆𝐻(𝑟| 𝑐𝑛𝑡||𝑚 ∈ 𝐷𝐶 and 𝑉𝐸𝑅𝐶 𝑑, 𝜎 = 1

Domain of SIGN

𝐷𝐶

Intuition for WOTS+C and FORS+C

● Wait a minute, the Sig-Gen running time is not constant!

○ Yes, but this is actually OK

● Is this secure against side-channel attacks?

○ Yes, if original SPHINCS+ is “Constant time” crypto then so is SPHINCS+C

○ “Constant time” means independence of running time and secret inputs

○ Our run time variance only depends on the message and public values

○ Variance is independent from any secret values and doesn't leak any information about them

Intuition for WOTS+C and FORS+C

● Won’t some signatures take a really long time?

○ We bound the probability 𝑝 for s signature will run more than 𝑓(𝑝) time the expected time

○ E.g., 𝑓 2−16 < 3, 𝑓 2−32 < 5 and 𝑓 2−64 < 9

○ Can optimize for parameter sets with lower variance.

■ E.g., for SPHINCS+C-256f 𝑓 2−64 < 1.2

Intuition for WOTS+C and FORS+C

● Won’t some signatures take a really long time?

○ We also run experiments to compare variability in SIG-GEN time with SPHINCS+

From WOTS+ and FORS to​

WOTS+C and FORS+C​

Function chains in WOTS*

Hash function ℎ ∶ {0,1}𝑛→ {0,1}𝑛

Parameter 𝑤

Chain: 𝑐𝑖 𝑥 = ℎ 𝑐𝑖−1 𝑥 = ℎ ∘ ℎ ∘ ⋯ ∘ ℎ(𝑥)

c0(x) = x

𝑐1(𝑥) = ℎ(𝑥)
𝒄𝒘−𝟏(𝑥)

i-times

WOTS Signature generation

M

b1 b2 b3 b4 … … … … … … … bm‘
bm‘+1 bm‘+2 … … bl

C

WOTS Signature generation

b1 b2 b3 b4 … … … … … … … bm‘ bm‘+1 bm‘+2 … … bl

c0(skl) = skl

pkl = cw-1(skl)

c0(sk1) = sk1
pk1 = cw-1(sk1)

σ1=cb1(sk1)

σl =cbl (skl)

Signature:

σ = (σ1, …, σl)

WOTS+C

We remove the checksum chains by forcing it to always a pre-defined value

Signing:

Instead of signing the message m, we sign d = h(s∥m), where s a salt.

Search for s s.t. d has a checksum S, add s to the signature

S is pre-defined to be the expected checksum.

Signer run-time is usually reduced! More work to find salt, but no checksum chains to calculate

Verifying:

Verifier run-time is reduced.

No need to verify the checksum chains

Only compute d = h(s∥m) and verify that d has checksum S (and verify the signature)

Can use the same technique to reduce more chains (at the cost of increasing Sig-Gen-Time)

pk1

a1

sk1

alen1

pklen1

a2

sk2

sklen1

pk2

alen1+1

sklen1+1

alen2

sklen2

pklen1+1

pklen2

Removed in SPHINCS+C

WOTS+C

FORS+C

● FORS includes multiple Merkle trees, opening one leaf in each tree

● Using similar techniques, we remove the last tree of the FORC+ signature

● Idea: force the hash for the last tree to always open the first leaf (leaf index 0)

● Find a salt s that satisfies the above

● Tweak: we can make the last tree larger than other to gain savings

● Verifier run-time is reduced (simply check that last tree has index 0)

Last tree removed

in FORS+C

FORS+C

SPHINCS+C

SPHINCS+C Parameter Sets

● As a starting point we can use the original SPHINCS+ parameter sets

● This results in a “compressed” version of SPHINCS+ that is strictly better

○ Faster Key-Gen-Time, Sig-Gen-Time, Sig-Ver-Time

○ Smaller Sig-Size

SPHINCS+C Parameter Sets

● However, we can do better.

● We can optimize parameter sets for different constraints and use cases

● E.g., we optimized SPHINCS+C paramters to:

○ Minimize Sig-Size

○ Keeping Sig-Gen-Time at least as fast as SPHINCS+

Improved Tradeoff with SPHINCS+C

SPHINCS+C Parameter Sets

● SPHINCS+C can provide better tradeoffs compare to SPHINCS+

● We are looking for feedback on real-world requirements and tradeoffs

○ Sig-Gen-Time Vs. Sig-Ver-Time

○ Sig-Size Vs. Sig-Ver-Time

○ Low qsign variants

● The paper includes a sage script for finding suitable parameter sets

Future Work

● In the paper we propose other optimization that require bigger code changes

and are not included in SPHINCS+C

○ Interleaved Trees for better FORS compression

○ Small trees of FORS+C

○ Soft-state-full variant to XMSS based on a tree of FORS+C

■ Only need to make sure you don’t pass the signature number limit

● Fine-tuning parameter sets choice

Conclusion

● We presented SPHINCS+C a “compressed” variant of SPHINCS+

○ Based on WOTS+C and FORS+C variants of WOTS+ and FORS used in SPHINCS+

○ Full tight security proof as in SPHINCS+

● SPHINCS+C allows for better tradeoffs and optimization of parameter sets

● WOTS+C optimizations can also be used in XMSS

● Improved tradeoffs and optimization also for low qsign variants

● Paper available at: ia.cr/2022/778

● Code: https://github.com/eyalr0/sphincsplusC/

● Any questions?

https://github.com/eyalr0/sphincsplusC/

