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Transport Layer Security (TLS)

• The most widely used cryptographic protocol 
• Provides communication security (https, VPN, etc.)

• TLS handshake is used for authentication and 
secure key exchange 

• TLS Record layer protects the communication
• Allows for cryptographic agility using different 

cipher suites 
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CBC_HMAC Ciphersuite in TLS

• Implements the HMAC-then-CBC scheme 
• Once the most popular TLS record cipher suite
• Long history of practical implementation attacks

• Still widely used (Oct 2018)
• ~8% by Mozilla's Telemetry 
• ~11% by ICSI Certificate Notary
• Better alternatives now available (e.g. AES-GCM)
• Supported for backwards compatibility



Crypto Scheme Vs Implementation 

• HMAC-then-CBC functionality for TLS is secure* [Krawczyk01, PRS11]
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Crypto Scheme Vs Implementation 

• Securely implementing CBC_HMAC for TLS is hard
• Padding oracle attacks due to non constant time implementation

• All implementations were vulnerable to Lucky 13 [AP 2013]

• Multiple rounds of attacks and patches
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Side channels attack mitigations

• Secret values should not change the code flow in any way  

measurable by attacker

• Attacker might be able to see error messages, measure running 

time, detect memory access patterns, and more
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Pseudo Vs Fully Constant time
Full Constant time

• Program flow independent

from secret values

• Blocks all currently known 

classes of attacks*

• “Full” is easy to test 

• Very high code complexity
• Hard to write/review

• OpenSSL AES-NI CBC_HMAC 

vulnerabilty (2013-2016)

Pseudo Constant time
• Mask program flow 

dependencies on secret values

• Blocks only currently 

implemented attacks

• Lower code complexity

• “Pseudo” is Hard to test
• Lucky 13 Strikes back [IIES 2015]

• Lucky Microseconds [AP 2016]

• ???



Our Findings 

``All secure implementations are alike; each insecure implementation is 

buggy in its own way.'' -- after Leo Tolstoy, Anna Karenina

• All fully constant time implementations of HMAC-then-CBC 

are secure*

• All pseudo constant time implementations are vulnerable 

• Amazon’s S2N, mbed TLS, GnuTLS, wolfSSL

• All countermeasures were buggy

• All implementations were vulnerable to different novel 

variants of cache attacks



CBC_HMAC – Lucky 13 Attack
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CBC Padding oracles [Vaudenay 2002]

• In CBC mode  Padding Oracles can be used to build a Decryption 

Oracle
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CBC_HMAC – Short Valid Padding
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Padding Oracle to Plaintext Recovery
• Needs multiple oracle queries 

• TLS handshakes’ keys are dropped after any error
• Can only recover data that is fixed between TLS handshakes

• BEAST like attack on session cookies 
• Use JavaScript in browser to repeatedly reopen connections
• At the start of each connection, the same session cookie is 

sent in the first packet
• From the JavaScript we can control the offset of the session 

cookie in the packet
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From Timing to Cache based Oracle

• Prior to our attack there was no known attacks against the 
fully patched pseudo constant time implementations 
• The timing is pseudo constant
• The overall memory access pattern is constant

• Our main observation
• The temporal memory access pattern is not constant
• Using new variants of the PRIME+PROBE cache attack 

we were able to recreate the padding oracle  
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Our results

• Exploiting the different temporal memory access patterns 
we can recreate a Lucky 13 attack variant

• PoC for 3 plaintext recovery attack variants
• Synchronized probe PRIME+PROBE on Amazon’s s2n
• Synchronized prime PRIME+PROBE on wolfSSL, mbed

TLS and GnuTLS
• “PostFetch” cache attack on mbed TLS
• Greedy Algorithm to optimize plaintext recovery



CBC_HMAC with SHA-384 Bugs

• Most widely used CBC_HMAC cipher suite
• All pseudo constant time countermeasures

were vulnerable
• Dummy operation calculation wrongly based on 

SHA-1/256 specific hardcoded values
• Some implementations didn’t even protect SHA-1/256

• Hard to test correctness of the pseudo constant time 
countermeasure
• All constant time countermeasures were secure



Disclosure

• wolfSSL switched to full constant time (release 3.15.4)
• mbed TLS released security advisory with CVEs 2018-0497 

and 2018-0497 that were marked as “high severity”
• Users urged to update to new version with interim fix
• Full constant time solution is planned

• Amazon s2n plans to disable CBC_HMAC by default and 
switch to the BoringSSL full constant time implementation

• GnuTLS made several changes to address the bugs
• We believe that the code is still vulnerable to variants of the 

attack  



“PostFetch” Cache Attack

• We want to know what part of a short array was read
• Differentiate between long and short access patterns 

inside a single cache line
• Continuous reading near the end of the cache line will 

cause the next cache line to be prefetched
• Target our cache attack on the cache line storing the bytes 

after the array

Cache Line 1 Cache Line 2

Accessed Memory No prefetching
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Synchronized probe PRIME+PROBE 

• We want to measure the  time difference
• E.g. between sending a message at tsend and a memory 

access by the target at either tsend +t1 or tsend + t2

• We choose tprobe such that t1 < tprobe < t2

• We prime the memory before sending the message, 
and probe at tsend + tprobe

• We also use synchronized prime PRIME+PROBE



Conclusion

• All pseudo constant time implementations we reviewed 
• were buggy and still vulnerable to the original Lucky 13 

attack.
• were vulnerable to one or more of our 3 novel cache 

attacks
• Writing fully constant time code is hard but it is worth the 

effort

• Any questions?


